

DEPARTMENT OF MECHANICAL ENGINEERING

Course Outcomes

SE: III SEM (REV-2019 'C' Scheme)

Subject- Engineering Mathematics-III, Course Code- MEC 301

CO1	Apply the concept of Laplace transform to solve the real integrals in engineering problems.
CO2	Apply the concept of inverse Laplace transform of various functions in engineering problems.
CO3	Expand the periodic function by using Fourier series for real life problems and complex engineering problems
CO4	Find orthogonal trajectories and analytic function by using basic concepts of complex variable theory.
CO5	Apply Matrix algebra to solve the engineering problems.
CO6	Solve Partial differential equations by applying numerical solution and analytical methods for one dimensional heat and wave equations

Subject- Strength of Materials, Course Code- MEC302

CO1	Demonstrate fundamental knowledge about various types of loading and stresses induced
CO2	Draw the SFD and BMD for different types of loads and support conditions
CO3	Analyse the bending and shear stresses induced in beam
CO4	Analyse the deflection in beams and stresses in shaft.
CO5	Analyse the stresses and deflection in beams and Estimate the strain energy in mechanical elements
CO6	Analyse buckling phenomenon in columns.

Subject- Production Processes, Course Code- MEC303

CO1	Demonstrate an understanding of casting process
CO2	Illustrate principles of forming processes.
CO3	Demonstrate applications of various types of welding processes.
CO4	Differentiate chip forming processes such as turning, milling, drilling, etc.
CO5	Illustrate the concept of producing polymer components and ceramic
	components
CO6	Illustrate principles and working of non-traditional manufacturing
CO7	Understand the manufacturing technologies enabling Industry 4.0

Subject- Materials and Metallurgy, Course Code- MEC304

CO1	Identify the various classes of materials and comprehend their properties
CO2	Apply phase diagram concepts to engineering applications
CO3	Apply particular heat treatment for required property development
CO4	Identify the probable mode of failure in materials and suggest measures to
	prevent them
CO5	Choose or develop new materials for better performance
CO6	Decide an appropriate method to evaluate different components in service

Subject- Thermodynamics, Course Code- MEC305

CO1	Demonstrate application of the laws of thermodynamics to a wide range of
	systems
CO2	Compute heat and work interactions in thermodynamic systems
CO3	Demonstrate the interrelations between thermodynamic functions to solve practical problems
CO4	Compute thermodynamic interactions using the steam table and Mollier chart
CO5	Compute efficiencies of heat engines, power cycles.
CO6	Apply the fundamentals of compressible fluid flow to the relevant systems

Subject- Materials Testing, Course Code- MEL301

CO1	Prepare metallic samples for studying its microstructure following the
	appropriate procedure
CO2	Identify effects of heat treatment on microstructure of medium carbon steel and
	hardenability of steel using Jominy end Quench test
CO3	Perform Fatigue Test and draw S-N curve
CO4	Perform Tension test to Analyze the stress - strain behaviour of materials
CO5	Measure torsional strength, hardness and impact resistanceof the material
CO6	Perform flexural test with central and three point loading conditions

Subject- Machine Shop Practice, Course Code- MEL302

CO1	Know the specifications, controls and safety measures related to machines and
	machining operations
CO2	Use the machines for making various engineering jobs
CO3	Perform various machining operations
CO4	Perform Tool Grinding
CO5	Perform welding operations

Subject- CAD – Modeling, Course Code- MESBL301

CO1	Illustrate basic understanding of types of CAD model creation
CO2	Visualize and prepare 2D modeling of a given object using modeling software
CO3	Build solid model of a given object using 3D modeling software
CO4	Visualize and develop the surface model of a given object using modeling
	software
CO5	Generate assembly models of given objects using assembly tools of a modeling
	software
CO6	Perform product data exchange among CAD systems.

Subject- Mini Project – 1 A, Course Code- MEPBL301

CO1	Identify problems based on societal /research needs
CO2	Apply Knowledge and skill to solve societal problems in a group
CO3	Develop interpersonal skills to work as member of a group or leader.
CO4	Draw the proper inferences from available results through theoretical/
	experimental/simulations
CO5	Analyze the impact of solutions in societal and environmental context for
	sustainable Development
CO6	Use standard norms of engineering practices
CO7	Excel in written and oral communication.
CO8	Demonstrate capabilities of self-learning in a group, which leads to life long
	learning.
CO9	Demonstrate project management principles during project work.

SE: IV SEM (REV-2019 'C' Scheme)

Subject- Engineering Mathematics-IV, Course Code- MEC 401

CO1	Apply the concept of Vector calculus to evaluate line integrals, surface
	integrals using Green's theorem, Stoke's theorem & Gauss Divergence theorem
CO2	Use the concepts of Complex Integration for evaluating integrals, computing
	residues & evaluate various contour integrals.
CO3	Apply the concept of Correlation, Regression and curve fitting to the
	engineering problems in data science
CO4	Illustrate understanding of the concepts of probability and expectation for
	getting the spread of the data and distribution of probabilities
CO5	Apply the concept of probability distribution to engineering problems & testing
	hypothesis of small samples using sampling theory
CO6	Apply the concepts of parametric and nonparametric tests for analyzing
	practical problems

Subject- Fluid Mechanics, Course Code- MEC402

CO1	Define properties of fluids, classify fluids and evaluate hydrostatic forces on
	various surfaces
CO2	Illustrate understanding of dimensional analysis of Thermal and Fluid systems
CO3	Differentiate velocity potential function and stream function and solve for
	velocity and acceleration of a fluid at a given location in a fluid flow
CO4	Formulate and solve equations of the control volume for fluid flow systems
	and Apply Bernoulli's equation to various flow measuring devices
CO5	Calculate pressure drop in laminar and turbulent flow, evaluate major and
	minor losses in pipes.
CO6	Calculate resistance to flow of incompressible fluids through closed conduits
	and over surfaces.

Subject- Kinematics of Machinery, Course Code- MEC403

CO1	Identify various components of mechanisms
CO2	Develop mechanisms to provide specific motion
CO3	Draw velocity and acceleration diagrams of various mechanisms
CO4	Choose a cam profile for the specific follower motion
CO5	Predict condition for maximum power transmission in the case of a belt drive
CO6	Illustrate requirements for an interference-free gear pair

Subject- CAD/CAM, Course Code-MEC404

CO1	Identify suitable computer graphics techniques for 3D modeling.
CO2	Transform, manipulate objects & store and manage data
CO3	Develop 3D model using various types of available biomedical data.
CO4	Create the CAM Toolpath for specific given operations
CO5	Build and create data for 3D printing of any given object using rapid
	prototyping and tooling processes
CO6	Illustrate understanding of various cost effective alternatives for manufacturing
	products

Subject- Industrial Electronics, Course Code- MEC405

Subject 1	Subject industrial Electronics, course code Mile ive	
CO1	Illustrate construction, working principles and applications of power electronic	
	Switches.	
CO2	Identify rectifiers and inverters for dc and ac motor speed control.	
CO3	Develop circuits using OPAMP and Timer IC 555.	
CO4	Identify digital circuits for industrial applications.	
CO5	Demonstrate the knowledge of basic functioning of microcontrollers.	
CO6	Analyze speed-torque characteristics of electrical machines for speed control.	

Subject- Industrial Electronics, Course Code- MEL401

CO1	Demonstrate characteristics of various electrical and electronics components.
CO2	Develop simple applications built around these components.
CO3	Identify use of different logic gates and their industrial applications.
CO4	Built and demonstrate parameter measurements using microcontroller.
CO5	Test and Analyze speed-torque characteristics of electrical machines for speed
	Control.

Subject- Kinematics of Machinery, Course Code- MEL402

CO1	Draw velocity diagram using Instantaneous Centre method
CO2	Find velocity and acceleration of a point on a four-bar mechanism by using
	Relative method.
CO3	Analyze velocity and acceleration of a specific link of a slider crank
+	mechanism using graphical approach by Relative method.
CO4	Plot displacement-time, velocity-time, and acceleration-time diagrams of
	follower motion.
CO5	Draw cam profile for the specific follower motion.
CO6	Develop and build mechanisms to provide specific motion.

Subject- Python Programming, Course Code- MESBL403

CO1	Demonstrate understand of basic concepts of python programming.
CO2	Identify, install and utilize python packages.
CO3	Develop and execute python programs for specific applications.
CO4	Develop and build python program to solve real-world engineering problems.
CO5	Prepare a report on case studies selected.

Subject- CNC and 3-D Printing, Course Code- MESBL401

CO1	Develop and execute part programming for any given specific operation.
CO2	Build any given object using various CNC operations.
CO3	Demonstrate CAM Tool path and prepare NC- G code.
CO4	Develop 3D model using available biomedical data.
CO5	Build any given real life object using 3D printing process.
CO6	Convert 2D images into 3D model.

Subject - Mini Project - 1 B, Course code- MEPBL401

CO1	Identify problems based on societal /research needs.
CO2	Apply Knowledge and skill to solve societal problems in a group.
CO3	Develop interpersonal skills to work as member of a group or leader.
CO4	Draw the proper inferences from available results through theoretical/
	Experimental/simulations.
CO5	Analyse the impact of solutions in societal and environmental context for
	Sustainable development.
CO6	Use standard norms of engineering practices
CO7	Excel in written and oral communication.
CO8	Demonstrate capabilities of self-learning to leads to life long Learning.

TE:V SEM (REV-2019 'C' Scheme)

Course Code:	MEC501
Course:	Mechanical Measurements and Controls
CO-1	Handle, operate and apply the precision measuring instruments / equipment's
CO-2	Analyze simple machined components for dimensional stability & functionality
CO-3	Classify various types of static characteristics and types of errors occurring in the system
CO-4	Classify and select proper measuring instrument for displacement, pressure, flow and temperature measurements
CO-5	Design mathematical model of system/process for standard input responses and analyse error and differentiate various types of control systems and time domain specifications
CO-6	Analyze the problems associated with stability

Course Code:	MEC502
Course:	Thermal Engineering
CO-1	Analyze the three modes of heat transfer in engineering application
CO-2	Develop mathematical models for different modes of heat transfer
CO-3	Analyze performance parameters of different types of heat exchangers
CO-4	Identify and analyze the Transient heat Transfer in engineering applications
CO-5	Explain construction and working of different components of internal combustion engines
CO-6	Evaluate engine performance and emission characteristics

Course Code:	MEC503
Course:	Dynamics of Machinery
CO-1	Demonstrate working Principles of different types of governors and Gyroscopic effects on the mechanical systems
CO-2	Illustrate basic of static and dynamic forces
CO-3	Determine natural frequency of element/system
CO-4	Determine vibration response of mechanical elements / systems
CO-5	Design vibration isolation system for a specific application
CO-6	Demonstrate basic concepts of balancing of forces and couples

Course	MEC504
Code:	WIEC304
Course:	Finite Element Analysis
CO-1	Solve differential equations using weighted residual methods.
CO-2	Develop the finite element equations to model engineering problems governed by second order differential equations.
CO-3	Apply the basic finite element formulation techniques to solve engineering problems by using one dimensional elements.
CO-4	Apply the basic finite element formulation techniques to solve engineering problems by using two dimensional elements.
CO-5	Apply the basic finite element formulation techniques to find natural frequency of single degree of vibration system.
CO-6	Use commercial FEA software, to solve problems related to mechanical engineering.

Course Code:	MEDLO5011
Course:	Optimization Technique (Elective)
CO-1	Identify the types of optimization problems and apply the calculus method to single variable problems.
CO-2	Formulate the problem as Linear Programming problem and analyse the sensitivity of a decision variable.
CO-3	Apply various linear and non-linear techniques for problem solving in various domain.
CO-4	Apply multi-objective decision making methods for problem in manufacturing environment and other domain.
CO-5	Apply multi criterion decision making methods for problem in manufacturing environment and other domain.
CO-6	Apply Design of Experiments method for Optimization.

Course Code:	MEDLO5012
Course:	Design of Experiment (Elective)
CO-1	Understand concept and get an overview of design of experiments.
CO-2	Understand and interpret full factorial design.
CO-3	Understand and interpret two and three level fractional factorial design.
CO-4	Understand and interpret robust design.
CO-5	Understand and interpret response surface methodology.
CO-6	Understand and interpret experimental design according to shainin, multivariate charts, components search, paired comparisons.

Course Code:	MEL501
Course:	Thermal Engineering
CO-1	Estimate thermal conductivity of engineering materials.
CO-2	Evaluate performance parameters of extended surfaces.
CO-3	Analyze heat transfer parameters in various engineering applications
CO-4	Measure emissivity of grey body.
CO-5	Evaluate the performance of material under unsteady state heat transfer.
CO-6	Analyze engine performance and emission parameters at different operating condition.

Course Code:	MEL502
Course:	Dynamics of Machinery
CO-1	Plot and analyze governor characteristics.
CO-2	Analyze gyroscopic effect on laboratory model.
CO-3	Estimate natural frequency of mechanical systems.
CO-4	Analyze vibration response of mechanical systems.
CO-5	Determine damping coefficient of a system.
CO-6	Balance rotating mass.

Course Code:	MEL503
Course:	Finite Element Analysis
CO-1	Select appropriate element for given problem.
CO-2	Select suitable meshing and perform convergence test.
CO-3	Select appropriate solver for given problem.
CO-4	Interpret the result.
CO-5	Apply basic aspects of FEA to solve engineering problems.
CO-6	Validate FEA solution.

Course Code:	MESBL501
Course:	Professional communication and ethics –II
CO-1	Plan and prepare effective business/ technical documents which will in turn provide solid foundation for their future managerial roles.
CO-2	Strategize their personal and professional skills to build a professional image and meet the demands of the industry.
CO-3	Emerge successful in group discussions, meetings and result-oriented agreeable solutions in group communication situations.
CO-4	Deliver persuasive and professional presentations.
CO-5	Develop creative thinking and interpersonal skills required for effective professional communication.
CO-6	Apply codes of ethical conduct, personal integrity and norms of organizational behavior.

Course Code:	MEPBL501
Course:	Mini Project – 2 A
CO-1	Breath and depth of literature survey
CO-2	Clarity of objectives and scope
CO-3	Quality of presentation and report preparation.
CO-4	Clarity of problem definition and feasibility.
CO-5	Analyze the impact of solutions in societal and environmental context for sustainable development.
CO-6	Use standard norms of engineering practices.

TE: VI SEM (REV-2019 'C' Scheme)

Course	MEC601
Code:	MECOVI
Course:	Machine Design
CO-1	Use design data book/standard codes to standardize the designed dimensions.
CO-2	Design Knuckle Joint, cotter joint and Screw Jack.
CO-3	Design shaft under various conditions and couplings.
CO-4	Select bearings for a given applications from the manufacturers catalogue
CO-5	Select and/or design belts and flywheel for given applications
CO-6	Design springs, clutches and brakes.

Course Code:	MEC602
Course:	Turbo Machinery
CO-1	Define various parameters associated with steam generators and turbo machines.
CO-2	Identify various components and mountings of steam generators with their significance.
CO-3	Identify various turbo machines and explain their significance.
CO-4	Apply principles of thermodynamics and fluid mechanics to estimate various parameters like mass flow rate power, torque, efficiency, temperature, etc.
CO-5	Evaluate performance of SG and Turbo machines and apply various techniques to enhance performance.
CO-6	Evaluate various phenomena related to performance like cavitations, choking, surging.

Course	MEC603
Code:	MECOOS
Course:	Heating, Ventilation, Air Conditioning and Refrigeration
CO-1	Illustrate the fundamental principles and applications of refrigeration and air
	conditioning systems.
CO-2	Identify various HVAC&R components.
CO-3	Evaluate performance of various refrigeration system
CO-4	Estimate cooling and heating loads for an air conditioning system.
CO-5	Select air handling unit and design air distribution system.
CO-6	Apply the knowledge of HVAC for the sustainable development of
	refrigeration and air conditioning system.

Course	MEC604
Code:	
Course:	Automation and Artificial Intelligence
CO-1	Demonstrate understanding of fundamentals of industrial automation and AI.
CO-2	Design & develop pneumatic / hydraulic circuits.
CO-3	Design and develop electro pneumatic circuits and PLC ladder logics.
CO-4	Demonstrate understanding of robotic control systems and their applications
CO-5	Demonstrate understanding of various AI and machine learning technologies

Course	MEDLO6021
Code:	WEDLO0021
Course:	Press Tool Design
CO-1	Demonstrate various press working operations for mass production of sheet
	metal parts.
CO-2	Identify press tool requirements to build concepts pertaining to design of press
CO-2	tools.
CO-3	Prepare working drawings and setup for economic production of sheet metal
CO-3	components.
CO-4	Select suitable materials for different elements of press tools.
CO-5	Illustrate the principles and blank development in bent & drawn components.
CO-6	Understand safety aspects and automation in press working.

Course Code:	MEDLO6023
Course:	Metal Forming Technology
CO-1	Understand the concept of different metal forming process
CO-2	Approach metal forming processes both analytically and numerically.
CO-3	Design metal forming processes.
CO-4	Develop approaches and solutions to analyze metal forming processes and the associated problems and flaws

Course Code:	MEL601
Course:	Machine Design
CO-1	Design shaft under various conditions.
CO-2	Design Knuckle Joint / cotter joint.
CO-3	Design Screw Jack.
CO-4	Design Flexible flange couplings/ Leaf spring.
CO-5	Convert design dimensions into working/manufacturing drawing.
CO-6	Use design data book/standard codes to standardise the designed dimensions.

Course Code:	MEL602
Course:	Turbo Machinery
CO-1	Differentiate boiler, boiler mountings and accessories.
CO-2	Conduct a trial on reciprocating compressor / centrifugal compressor.
CO-3	Conduct a trial on impulse turbine and analyze its performance.
CO-4	Conduct a trail on reaction turbine and analyze its performance.
CO-5	Conduct a trial on Centrifugal pump and analyze its performance.
CO-6	Conduct a trial on Reciprocating pump and analyze its performance.
CO-7	Conduct a trial on gear pump.

Course Code:	MEL603
Course:	Heating, Ventilation, Air Conditioning and Refrigeration
CO-1	Aware of the roles and ethics of s eh &y engineers in related industries.
CO-2	Present the impact of professional engineering solutions in societal and environmental contexts.
CO-3	Evaluate performance of HVAC & R system.
CO-4	Develop awareness of the engineering and technological aspects in the s eh &y industries.
CO-5	Communicate effectively through the preparation of report and practical presentation.
CO-6	Analyze design aspects of HVAC & R system in various applications.

Course Code:	MESBL601
Course:	Measurements and Automation
CO-1	Apply inspection gauge to check or measure surface parameters.
CO-2	Measure surface parameters using precision measurement tools and equipment.
CO-3	Measure different mechanical parameters by using sensors.
CO-4	Analyse the response of a control systems.
CO-5	Demonstrate use of automated controls using pneumatic and hydraulic systems.
CO-6	Implement program on PLC system and demonstrate its application.

BE: VII SEM (REV- 2019)

Course Code:	MEC701
Course:	Design of Mechanical System
CO-1	Apply the concept of system design
CO-2	Select appropriate gears for power transmission on the basis of given load and speed
CO-3	Design material handling systems such as hoisting mechanism of EOT crane
CO-4	Design belt conveyor systems
CO-5	Design engine components such as cylinder, piston, connecting rod and crankshaft
CO-6	Design pumps for the given applications

Course Code:	MEC702
Course:	Logistics and Supply Chain Management
CO-1	Demonstrate a sound understanding of Logistics and Supply Chain
	Management concepts and their role in today's business environment.
CO-2	Identify the drivers of supply chain performance and risks in supply chain
CO-2	management.
СО-3	Apply various techniques of inventory management and rank the items using
	inventory management technique
CO-4	Apply various strategies and techniques to minimize overall logistics cost
CO-5	Understand the role of digitization in supply chain management leading to
	sustainability
CO-6	Apply various mathematical models/tools to design the supply chain network

Course Code:	MEDLO7032
Course:	Renewable Energy Sources
CO-1	Describe the need for renewable energy and its potential for the development of a sustainable Environment
CO-2	Analyze different solar collectors using geometrical parameters and photovoltaics for generation of solar energy
CO-3	Identify and analyze various wind turbine energy harnessment techniques
CO-4	Design biogas plant for harnessing energy from organic waste
CO-5	Describe significance of hydrogen energy to fulfill present and future energy needs.
CO-6	Describe the operating principle of geothermal energy and ocean energy and their role in sustainable

development

Course Code:	MEDLO7041
Course:	Machinery Diagnostics
CO-1	Relate basic concepts of Machinery Diagnostic.
CO-2	Describe the working of Vibration Measuring Instruments
CO-3	Apply different Signal Processing Techniques in Vibration Measurement
CO-4	Identify common faults in Machinery using Vibration Spectrum
CO-5	Interpret the Vibration Signals for Monitoring and Prognosis
CO-6	Apply applications of condition monitoring

Course Code:	ILO7011
Course:	Product Life Cycle Management
CO-1	Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation
CO-2	Illustrate various approaches and techniques for designing and developing products
CO-3	Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
CO-4	Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant
CO-5	Apply environmental aspects in product design.
CO-6	Apply Life Cycle Assessment and Life Cycle Cost Analysis concept.

Course Code:	ILO7011
Course:	Product Lifecycle Management
CO-1	Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation
CO-2	Illustrate various approaches and techniques for designing and developing products.
CO-3	Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
CO-4	Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant
CO-5	Apply enviornmental aspects in product design.
CO-6	Iiiustrate various approaches and techniques in Life Cycle cost Assessment and Analysis.

Course Code:	ILO7015
Course:	Operation Research
CO-1	Apply OR techniques to formulate and solve real-world problem.
CO-2	Develop an integrated framework for strategic thinking and problem solving
CO-3	Identify mathematical tools that are needed to solve optimisation problems
CO-4	Identify appropriate decision making approaches and apply tools to be used.
CO-5	Analyse situations in manufacturing environment and optimizing the solution
CO-6	Identify features of operations and production management and provide solution.

Course Code:	MEL701
Course:	Design of mechanical system
CO-1	Apply the concept of system design.
CO-2	Design of hoisting mechanism of EOT crane
CO-3	Design belt conveyor systems
CO-4	Design pumps for the given applications
CO-5	Design engine components such as cylinder, piston, connecting rod and crankshaft

Course Code:	MEL702
Course:	Maintenance Engineering Lab
CO-1	Identify different tools used for maintenance.
CO-2	Demonstrate dismantling and assembly of mechanical system.
CO-3	Apply different maintenance strategies.
CO-4	Demonstrate the process of servicing a machine.
CO-5	Identify common faults in Machinery using Vibration Spectrum.
CO-6	Interpret the Vibration Signals for Monitoring and Prognosis.

Course Code:	MEL703
Course:	Industrial Skills
CO-1	Skilfully prepare and edit documents and slides on MS Word and MS PowerPoint etc.
CO-2	Execute functions on MS Excel.
CO-3	Learn how to navigate tasks and execute functions in G-suite.
CO-4	Understand and practice metacognitive skillsof creativity and problem solving
CO-5	Hone team building and leadership skills.

CO-6 Use of typesetting/PPT packages like Latex, Prezi

Course Code:	MEP701
Course:	Project-I
CO-1	Students will be able to develop the understanding of the problem domain through extensive review of literature
CO-2	Students will be able to identify and analyze the problem in detail to define its scope with problem specific data
CO-3	Students will be able to identify various techniques to be implemented for the selected problem and related technical skills through feasibility analysis
CO-4	Students will be able to design solutions for real-time problems that will positively impact society and environment
CO-5	Students will be able to develop clarity of presentation based on communication, teamwork and leadership skills.
CO-6	Students will be able to inculcate professional and ethical behavior

BE: VIII SEM (REV-2019)

Course Code:	MEC801
Course:	Operations Planning and Control
CO-1	Illustrate operations functions and manage operations in a better way
CO-2	Apply various strategies to develop aggregate production plan based on the demand forecasting.
CO-3	Apply various algorithms in scheduling and sequencing of manufacturing and service operations
CO-4	Develop Material Requirements Plans (MRP) to estimate the planned order releases
CO-5	Apply various techniques for facility layout planning and line balancing to optimize the resources
CO-6	Demonstrate the importance of implementation of JIT, Lean, Agile and Synchronous manufacturing in manufacturing and service organizations

Course Code:	MEDLO8051
Course:	Composite Materials
CO-1	Select the type of material for the fibres and matrix in a composite material for
	the given application
CO-2	Relate stresses and strains through the elastic constants for a given lamina
CO-3	Evaluate elastic properties of a lamina based on the properties of its

	constituents.
CO-4	Predict failure of a lamina under the given loading condition.
CO-5	Select the number of laminae and their stacking sequence in a composite material for the given loading condition
CO-6	Identify the type of damage occurring in a composite structure and select an appropriate method to repair it.

Course Code:	MEDLO8052
Course:	Smart Materials
CO-1	Classify and select different types of smart materials
CO-2	Comprehend Important Concepts and principles of Smart Materials
CO-3	synthesis, sensing and actuation of Piezoelectric Materials, Magneto strictive Materials, Shape Memory Alloys, Electroactive Polymers
CO-4	synthesis, sensing and actuation of Ferrofluids and Magneto rheological Fluids, Soft Matter, Carbon Nanotubes and Carbon nanostructures, Thermoelectric Materials
CO-5	Classify and select Smart Materials for Energy Applications: Materials used for energy storage
CO-6	Classify and select Composite Materials, Nano Composite Materials

Course Code:	MEDLO8061
Course:	Product Design and Development
CO-1	Describe the process of product design & development
CO-2	Employ engineering, scientific, and mathematical principles to develop and execute a design project from a concept to a finished product.
CO-3	Create 3D solid models of mechanical components using CAD software.
CO-4	Demonstrate individual skills using selected manufacturing techniques such as rapid Prototyping
CO-5	Fabricate an electromechanical assembly of a product from engineering drawings
CO-6	Work collaboratively in a team to complete a design project.
CO-7	Effectively communicate the results of projects and other assignments both in a written and oral format.

Course Code:	MEDLO8062
Course:	Design for X
CO-1	Apply design concepts and guidelines for manufacturing and assembly
CO-2	Demonstrate the concept of value analysis and its relevance
CO-3	Understand the economics of product development

CO-4 Apply design concepts for reliability and maintainability

Course Code:	ILO8021
Course:	Project Management
CO-1	Gain project management foundation and various organization structure knowledge.
CO-2	Apply selection criteria and select an appropriate project from different options
CO-3	Write work break down structure for a project and develop a schedule based on it.
CO-4	Identify opportunities and threats to the project and decide an approach to deal with them Strategically
CO-5	Use Earned value technique and determine & predict status of the project
CO-6	Capture lessons learned during project phases and document them for future reference

Course Code:	MEL801
Course:	Product Design and Development
CO-1	Identify the need for developing products
CO-2	Select suitable PD&D processes
CO-3	Apply the creativity & industrial design methods to design & develop the chosen product
CO-4	Work collaboratively in a team to complete a PD&D project
CO-5	Effectively communicate the results of projects and other assignments both in a written and oral format.

Course Code:	MEL802
Course:	Laboratory based on IoT
CO-1	Develop simple applications using microcontrollers 8051 and Arduino
CO-2	Interface simple peripheral devices to a Microcontroller
CO-3	Use microcontroller based embedded platforms in IoT
CO-4	Use wireless peripherals for exchange of data
CO-5	Setup cloud platform and log sensor data

Course Code:	ILO8022
Course:	Finance Management
CO-1	Students should be able to explain the importance and components of the

	Indian Financial System
CO-2	Students should be able to estimate the risk & returns and present / future
	value of of various investments
СО-3	Students should be able to describe corporate finance and significance of
	financial statements & ratio analysis
CO-4	Students should be able to calculate capital budgeting using various
	investment appraisal criterias & also the working capital requirements
CO-5	Students should be able to explain the various sources of finance and capital
	structure theories & approaches
CO-6	Students should be able to describe the dividend policy theories & approaches

Course Code:	ILO8028
Course:	Digital Business Management
CO-1	Summarize drivers of digital business.
CO-2	Illustrate various approaches and techniques for E-business and management.
CO-3	Explain different digital business support services and technologies in E infrastructure.
CO-4	Explain various ethics and societal impacts of ecommerce.
CO-5	Identify the need of security and summarize various security techniques.
CO-6	Develop E-business plan.

Course Code:	ILO8029
Course:	Environmental Management
CO-1	Identify environmental Issues relevant to India and Global concerns.
CO-2	Understand and apply the concept of Environment Management and Sustainable development.
СО-3	Relate to the scope of Environment Management and identify career opportunities
CO-4	Understand the concept of ecology, Ecosystem, its interdependence and food chain.
CO-5	Demonstrate awareness of environment related legislations.
CO-6	Develop awareness of EMS and ISO-14000.

Course Code:	MEP801
Course:	Major Project-II
CO-1	Students will be able to implement solutions for the selected problem by applying technical and professional skills.

CO-2	Students will be able to analyze impact of solutions in societal and
	environmental context for sustainable development.
CO-3	Students will be able to collaborate best practices along with effective use of
	modern tools.
CO-4	Students will be able to develop proficiency in oral and written
	communication with effective leadership and teamwork.
CO-5	Students will be able to nurture professional and ethical behavior.
CO-6	Students will be able to gain expertise that helps in building lifelong learning
	Experience.